Extracellular cysteine/cystine redox regulates the p44/p42 MAPK pathway by metalloproteinase-dependent epidermal growth factor receptor signaling.
نویسندگان
چکیده
Previous research shows that stimulation of proliferation of colon carcinoma (Caco-2) cells by a more reduced extracellular cysteine/cystine (Cys/CySS) redox state occurs with no apparent effect on intracellular glutathione and that this stimulation is lost on addition of epidermal growth factor. The purpose of the present study was to determine whether a more reduced extracellular Cys/CySS redox state activates the mitogenic p44/p42 mitogen-activated protein kinase (MAPK) pathway and whether this is signaled through the epidermal growth factor receptor (EGFR). Caco-2 cells were exposed to a range of physiological extracellular redox conditions from -150 to 0 mV. In the absence of added growth factors, the most reduced (-150 mV) redox state induced an 80% increase in EGFR phosphorylation, and this was followed by a marked increase in phosphorylation of p44/p42 MAPK. Inhibitors of EGFR (AG1478) and p44/p42 MAPK (U0126) phosphorylation blocked redox-dependent p44/p42 phosphorylation, indicating that signaling occurred by EGFR. These effects were inhibited by pretreatment with a nonpermeant alkylating agent, showing that signaling involved thiols accessible to the extracellular space. The EGFR ligand TGF-alpha was increased in culture medium at more reduced redox states. Redox-dependent phosphorylation of EGFR was completely prevented by a metalloproteinase inhibitor (GM6001), and an antibody to TGF-alpha partially inhibited the phosphorylation of p44/p42 MAPK by redox. Thus the data show that a redox-dependent activation of metalloproteinase can stimulate the mitogenic p44/p42 MAPK pathway by a TGF-alpha-dependent mechanism. Because Cys availability and Cys/CySS redox are dependent on nutrition, disease, and environmental exposures, the results suggest that cell proliferation could be influenced physiologically by Cys-dependent redox effects on growth factor signaling pathways.
منابع مشابه
Nerve growth factor stimulation of p42/p44 mitogen-activated protein kinase in PC12 cells: role of G(i/o), G protein-coupled receptor kinase 2, beta-arrestin I, and endocytic processing.
In this study, we have shown that nerve growth factor (NGF)-dependent activation of the p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) pathway in PC12 cells can be partially blocked by pertussis toxin (which inactivates the G proteins G(i/o)). This suggests that the Trk A receptor may use a G protein-coupled receptor pathway to signal to p42/p44 MAPK. This was supported by data showing...
متن کاملPathway in Prostate Cancer Cell Lines Kinase A Activator on the Mitogen-activated Protein Kinase Action of EGF, Insulin-like Growth Factor I, and a Protein Epidermal Growth Factor (EGF) Receptor Blockade Inhibits the
Epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) are potent mitogens that regulate proliferation of prostate cancer cells via autocrine and paracrine loops and promote tumor metastasis. They exert their action through binding to the corresponding cell surface receptors that initiate an intracellular phosphorylation cascade, leading to the activation of mitogen-activated pr...
متن کاملInactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملEpidermal growth factor (EGF) receptor blockade inhibits the action of EGF, insulin-like growth factor I, and a protein kinase A activator on the mitogen-activated protein kinase pathway in prostate cancer cell lines.
Epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) are potent mitogens that regulate proliferation of prostate cancer cells via autocrine and paracrine loops and promote tumor metastasis. They exert their action through binding to the corresponding cell surface receptors that initiate an intracellular phosphorylation cascade, leading to the activation of mitogen-activated pr...
متن کاملNerve Growth Factor Stimulation of p42/p44 Mitogen-Activated Protein Kinase in PC12 Cells: Role of Gi/o, G Protein-Coupled Receptor Kinase 2, b-Arrestin I, and Endocytic Processing
In this study, we have shown that nerve growth factor (NGF)dependent activation of the p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) pathway in PC12 cells can be partially blocked by pertussis toxin (which inactivates the G proteins Gi/o). This suggests that the Trk A receptor may use a G protein-coupled receptor pathway to signal to p42/p44 MAPK. This was supported by data showing th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 289 1 شماره
صفحات -
تاریخ انتشار 2005